内容字号: 默认 大号超大号

段落设置: 段首缩进取消段首缩进

字体设置:切换到微软雅黑切换到宋体

张亚勤院士谈“智能计算新趋势”

2021-11-22 10:57 出处:人气: 评论(

下载

作为第四次工业革命的核心,人工智能已经成为全球新一轮科技革命和产业变革的核心驱动力。在2021人工智能计算大会(AICC 2021)上,清华大学智能科学讲席教授、美国艺术与科学院院士张亚勤带来了《智能计算新趋势》主题演讲,分享了在信息、物理和生物智能融合的新时代下,AI计算面临的新挑战及突破传统范式的新趋势。同时,张亚勤教授分享了人工智能在生命科学、绿色计算及自动驾驶领域最前沿的应用成果,探讨人工智能的技术如何真正赋能各产业,推动社会的进步。

以下是张亚勤教授演讲原文(有删减):

大家好,特别高兴参加人工智能计算大会,我今天分享的是有关于产业发展的新趋势,包括人工智能在生命科学、双碳趋势下的绿色计算、自动驾驶等领域中扮演的一些角色。

AI计算趋势

在过去30年中,如果说有一件事是最重要的,那无疑是“数字化”,在80年代、90年代我们所做的是把内容和企业数字化。从当时的语音、图像、视频、文本,后来到企业ERP、CRM,包括云计算,其实是数字化的1.0和2.0阶段。

现在,我们进入了新一轮的数字化3.0,这包括两个世界的数字化。

■ 一是物理世界数字化,我们的路、车、交通灯,家庭、车间车床工厂,甚至整个城市都在数字化。

■ 二是生物世界,即我们的生命世界也在数字化,我们的大脑、身体器官、DNA基因、蛋白质等正在走向数字化,同时各种新的生物电子芯片、脑机接口技术也在不断发展。

麻省理工学院多媒体实验室主任Nicholas Negroponte写的《数字化生存》,谈的就是数字化1.0,他认为这是从原子到信息再到比特的变革过程。至于数字3.0阶段,我认为是从比特回到原子、分子的过程,可以说是原子、分子和比特的双方映射。

第三次数字化和第一轮、第二轮有完全不同的一些特点。一方面是指数级的数据,比如在无人车领域,每天一辆车产生的数据量是5T;在基因测序领域,每一次测序产生的数据是3T,蛋白质三维结构的数据10300,所以数据在海量地增长。另一方面,这些数据主要不是给人而是给机器做决策的,是机器到机器的环节。

人工智能经过了很多发展阶段,最早是更多依靠知识的符号逻辑推理,但知识并不完备,所以造成了AI的第一个冬天。而现在,更多是数据驱动的深度学习;未来,我认为是知识和数据的融合,包括关于大脑的知识,以及大量的现实世界数据,同时也包括第一性原理方程式,比如薛定谔方程、分子动力学方程等等

深度学习可以说是这十年来的主流,从RNN、LSTM、CNN,到现在的GAN和Transformer,其经历了丰富的发展阶段,当下的方向是预训练、多模态、大模型。其中有不少挑战,包括因果性、可解释性、透明性,但也有新的解决方案。

目前,在感知方面,机器已经达到和人类相当的水平,甚至在某些方面还要更好,虽然认知能力还有一定的差距,但我认为在未来十年左右也将缩小。

人工智能发展中很重要的一点,就是三要素里面的“算力”,也即“计算”。摩尔定律已经遇到瓶颈,因此,现在的深度学习,特别是大模型、大计算,其算力不仅仅要达到摩尔定律,而且要超越摩尔定律。它们每年的计算需求几乎达到10倍增长。

例如GPT-3,它是1000多亿参数的大模型。OpenAI团队后面没有资金继续做,微软投资把GPT-3模型训练出来。

中国和美国在这个领域你追我赶。鹏城的盘古、智源的悟道、浪潮的“源1.0”、微软-AMD的图灵,不管是算力还是参数、数据,都比GPT-3大很多。在此方面,GPT-4可能也会马上出现,一旦出现,我认为中国的企业、科研机构也会超越GPT-4。这是一个好现象,中美两国在这个行业的科技、产业方面形成良性竞争,对整个行业的发展都是有益的。

IT产业有三个定律,一个是香农定律,一个是冯·诺依曼架构,另外一个是摩尔定律。我们现在所做的,就是突破这三个极限,特别是冯·诺依曼架构,它已经被使用了将近60年,依然是目前计算的主流架构。在人工智能时代,它有诸多局限,现在很多科研、产业都在想怎么去突破它。比如,在听觉、视觉、触觉、味觉之外打造新的感知,如激光雷达、三维结构、光传感、生物的传感;另外,我们有新的数据流,需要海量的并行计算,包括AI的一些算法,如矩阵、算子、波尔代数等,都需要超越冯·诺依曼架构。我们看到,很多新兴科研产品出现,一些非传统的芯片公司现在也都进入了芯片和程序库领域。

分享给小伙伴们:
本文标签: 人工智能, 云计算, 智能计算

更多文章

相关文章